
www.walsaip.uprm.eduWALSAIP

WALSAIP

Supported By

Harnessing the power of wide-area distributed computing platforms is a major
challenge nowadays, and scheduling is crucial for achieving this goal. Traditional
scheduling minimizes the makespan of the execution of a given set of jobs. In most
practical situations, the exact computation of a minimal makespan is NP-Hard.

An interesting alternative introduced by D. Bertsimas, D. Gamarnik in 1999, is a
schedule that optimizes the steady-state operation of the system. This approach is
proven to be particularly well-suited for master-slave tasking, and in general, for
divisible load applications.

The actual schedule is
generated by an algorithm for
coloring a weight edge
bipartite graph. This graph is
decomposed into a weighted
sum of matchings such that
the sum of the coefficients is
smaller than one.

C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand and Y. Robert,
Scheduling Strategies for Master-Slave Tasking on Heterogeneous Processor
Platforms, IEEE Transactions on Parallel and Distributed Systems 15 (4) (2004)
319-330.

Li X. and Zang W., A Combinatorial Algorithm for Minimum Weighted Colorings of
Claw-free Perfect Graphs, Journal of Combinatorial Optimization. The
Netherlands, Springer, 2005, 9: 331-347. (Publication No. : 108691)

Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford.
Introduction to Algorithms, second edition, MIT Press and McGraw-Hill. ISBN
0262531968

Papadimitriou, Christos H.; Steiglitz, Kenneth. Combinatorial Optimization:
Algorithms and Complexity, Dover Publications Inc. 1998. ISBN 0486402584

Problem Formulation1

Proposed Solution2

References6

Conclusion5

Theoretical Framework3

Demo Construction4

Currently the demo accepts variations in communication and execution times. By
observing these variations it become apparent that, with one master, no
throughput is higher than two, independent of the number of nodes,
communication and execution times.
We expect to evaluate a problem with more nodes, simulating a grid based
platform and we will used this results in order to construct a prototype system
related to a specific problem.

Construction of the schedule:

Jaime Andrés Ballesteros – PhD. Student Luis De La To rre MSc.– PhD Student Dr. Jaime Seguel – Adv isor
PDC Group, CISE Department, CISE Department Unive rsity of Puerto Rico,
Email: jaime.ballesteros@ece.uprm.edu Email: torre_dl@math.uprm.edu Mayagüez Campus

ADAPTIVE STEADY-STATE SCHEDULING FOR GRID PLATFORMS

Master Node

Sub-Master Node

Computational Node

Computational Node

* Weight of the edges are Communication Times

Graphical representation of a Master – Slave Computi ng Platform

Because the schedule is periodic and computable in polynomial time, it is
possible to observe its actual performance in a period, inject that information into
the polynomial methods, and re-compute the optimal steady-state schedule for
upcoming periods. This is particularly useful in wide-area distributed systems
where hard-to-predict communications jams may occur.

Our demo (Steady State
Scheduler V 1.0) was written in
Python® and allows us to
change execution and
computation times in order to
show the effects of adaptivity.

This demo:

• Allows to change
communication and
execution times.

• Uses Glpk® to solve the
Master-Slave linear
programming problem.

• Uses the previous
algorithms to build the
schedule

•.Display the generated
schedule in a Gantt chart.

Banino et al (2004) use
a nonoriented graph to
model a hybrid
computer platform. The
optimal steady state is
defined as the fraction
of time spent computing
and the fraction of time
spent sending or
receiving tasks along
each communication
links, so that the overall
number of tasks
processed at each time
step is maximum

Master Slave Scheduling Problem:

A linear program maximizes the
throughput in the system:
Let G = (V,E,w,c) be the
platform graph model and
wi: the weight of the node Pi in
G represents units of time
required for Pi to process one
task.
cij: be the weight of the edge
between the nodes Pi and Pj,
which represents the time
needed to communicate one
task in both directions.
αi: the fraction of time spent by
Pi computing,
sij: the fraction of time spent by
Pi sending tasks to each
neighbor processor Pj

rij: the fraction of time spent by
Pi receiving tasks from each
neighbor processor Pj.

Example execution of Steady State Scheduler V. 1.0 Program

Gannt Chart of the new schedule

Master-Slave Scheduling Linear Program

Maximize ntask(G) = ∑
=

p

i i

i

w1

α

Subject to

,i∀ 10 ≤≤ iα

),(, inji ∈∀∀ 10 ≤≤ ijs

),(, inji ∈∀∀ 10 ≤≤ ijr

,Eeij ∈∀ ijij rs =

,i∀ 1
)(

≤∑
∈ inj

ijs

,i∀ 1
)(

≤∑
∈ inj

ijr

,Eeij ∈∀ 1≤+ ijij rs

,mi ≠∀ ∑∑
∈∈

+=
)()(inj ij

ij

i

i

inj ij

ij

c

s

wc

r α

),(mni∈∀ 0=mjr

α1= 1

α2= 1 α3= 1

α4= 1

s12= ½

P2 P3

P4

P1

s13= ½

s34= 3/4s42= 1/4

R

R R

R

S

S S

S

1/2 1/2

1/4

3/4

= 1/2 + 1/4

+ 1/4

1/21/2

3/4
1/4

M’ 1

M’ 3

x(M3)

x(M1) x(M2)

M’ 2

